

National emission ceiling – a opportunity for WGE?

Salar Valinia

Co-chair ICP IM & Swedish EPA

SWEDISH ENVIRONMENTAL PROTECTION AGENCY

DIRECTIVES

DIRECTIVE (EU) 2016/2284 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 14 December 2016

on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC

(Text with EEA relevance)

Working Group on Effects of the Convention on Long-range Transboundary Air Pollution

The aim of the directive

In order to move towards achieving levels of air quality that do not give rise to significant negative impacts on and risks to human health and the environment, this Directive establishes the emission reduction commitments for the Member States' anthropogenic atmospheric emissions of sulphur dioxide (SO2), nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOC), ammonia (NH3) and fine particulate matter (PM2,5)

SWEDEN						
	2005	2012	2020	2030	2030	2030
			NEC	CLE	NEC	MTFR
SO ₂	36	-23%	-22%	-14%	-22%	-18%
NOx	175	-25%	-36%	-66%	-66%	-70%
PM _{2.5}	30	-10%	-19%	-16%	-19%	-48%
NH₃	56	-8%	-15%	-10%	-17%	-33%
VOC	198	-6%	-25%	-39%	-36%	-54%

POLAND						
	2005	2012	2020	2030	2030	2030
			NEC	CLE	NEC	MTFR
SO ₂	1217	-30%	-59%	-66%	-70%	-79%
NOx	851	-4%	-35%	-49%	-39%	-63%
PM _{2.5}	141	-2%	-16%	-11%	-58%	-53%
NH ₃	272	-3%	-1%	1%	-17%	-37%
VOC	575	10%	-25%	-34%	-26%	-67%

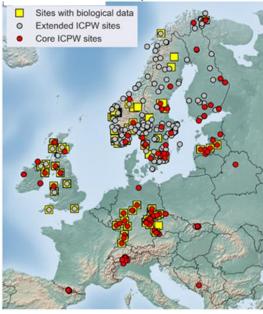
UK						
	2005	2012	2020	2030	2030	2030
			NEC	CLE	NEC	MTFR
SO ₂	709	-40%	-59%	-80%	-88%	-91%
NOx	1592	-33%	-55%	-72%	-73%	-80%
PM _{2.5}	93	-17%	-30%	-28%	-46%	-57%
NH₃	302	-8%	-5%	-8%	-16%	-27%
VOC	1160	-28%	-37%	-37%	-39%	-52%

Brief description of the ecosystem monitoring NECD

To ensure the **monitoring of negative** impacts of air pollution upon ecosystems based on a network of monitoring sites that is representative of their freshwater, nonforest natural and semi-natural habitats, and forest ecosystem types, taking a costeffective and risk-based approach (article 9 paragraph 1 first subparagraph)

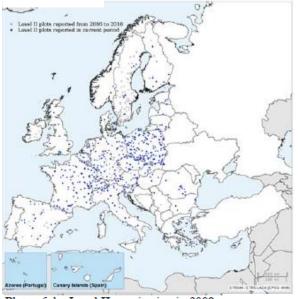
What has to be done?

- To report by 1 July 2018 and every four years thereafter, to the Commission and the European Environment Agency, the location of the monitoring sites and the associated indicators used for monitoring air pollution impacts (article 10 paragraph 4(a))
 - To report by 1 July 2019 and every four years thereafter, to the Commission and the European Environment Agency, the monitoring data referred to in Article 9 (Article 10 paragraph 4(b)).

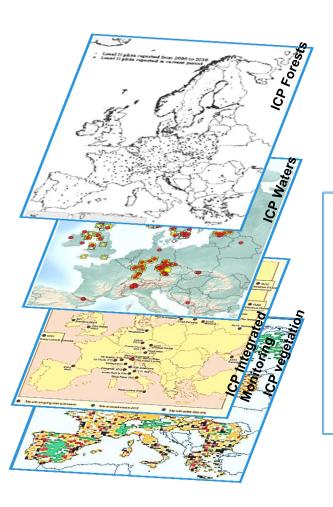

WGE Ecosystems Monitoring Network

3 ICPs: specific and complementary ecosystem monitoring covering from aquatic to terrestrial ecosystems

- Harmonized methodologies
- Manuals available
- Historical data sets
- Monitoring & Reporting routines


- Chemical and biological data
- Data: Collection, processing, analysis, reporting and communication
- Linked to atmospheric deposition data (sites/EMEP)

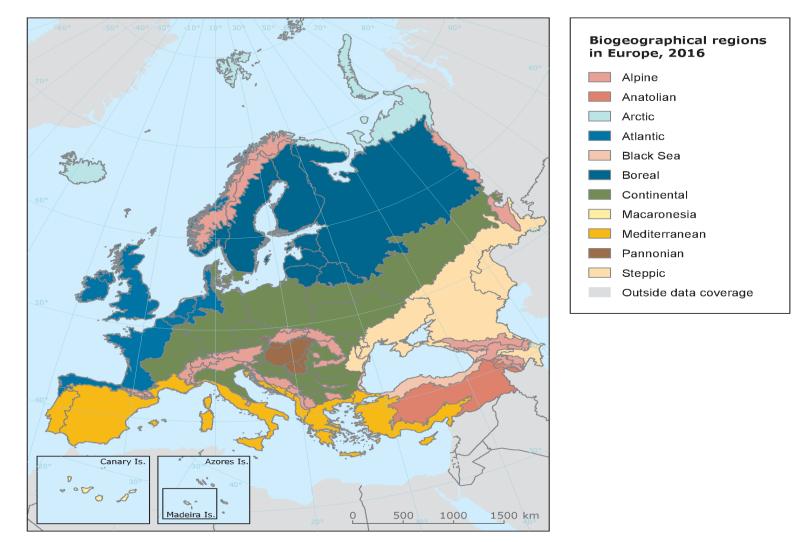
ICP-Waters


ICP-Forests

Plots of the Level II monitoring in 2009.

The existing WGE monitoring networks under the LRTAP Convention fits to the NEC Directive objectives as:

Courtesy of Isaura Rabajo (chair WGE)

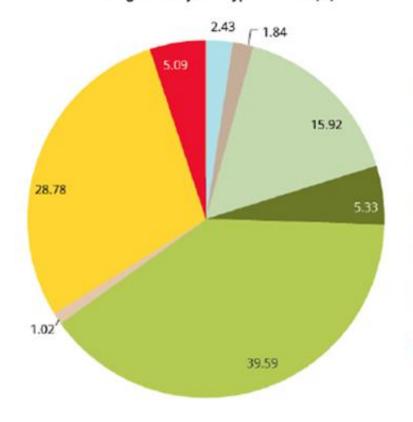

- ✓ Is an operational network
- Monitors key indicators of air pollution
- In sites that are representative of European ecosystem types

WGE provides a suitable platform for ecosystem monitoring as it has: Tools (Methodologies & Manuals) A broad panel of experts (international& multidisciplinary)

More than 20 years of experience

- Almost all MS participate in any of the ICPs related with monitoring
- Easy incorporation into the network
- Scientific and technical support wge

Biogeographical regions of Europe

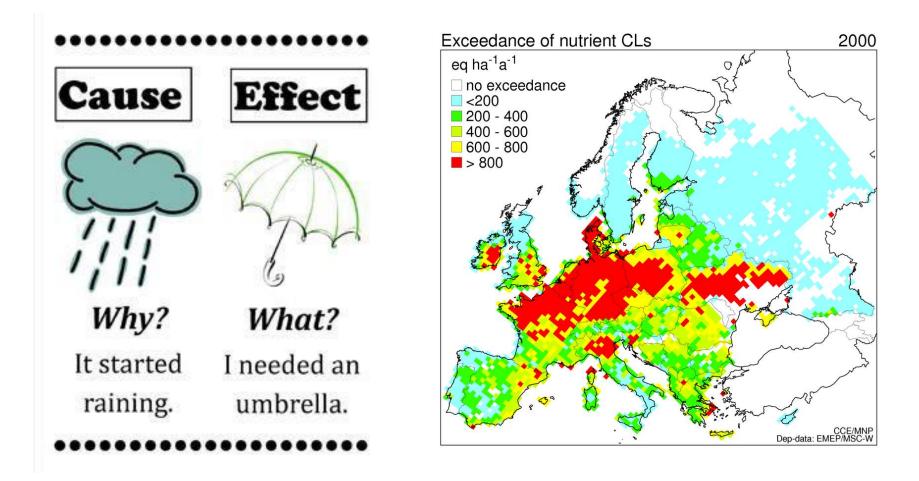


https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3

MAES terrestrial and freshwaters ecosystem types EU-28

Coverage of ecosystem types in EU-28 (%)

- C Inland surface waters (105 740 km²)
- D Mires, bogs and fens (80 088 km²)
- E Grasslands and land dominated by forbs, mosses or lichens (693 399 km²)
- F Heathland, scrub and tundra (232 085 km²)
- G Woodland, forest and other wooded land (1 724 596 km²)
- H Inland unvegetated or sparsely vegetated habitats (44 576 km²)
- Regularly or recently cultivated agricultural, horticultural and domestic habitats (1 253 460 km²)
- J Constructed, industrial and other artificial habitats (221 680 km²)


MAES Technical Report 2016-095 "Mapping and assessing the condition of Europe's ecosystems: Progress and challenges. 3rd Report – Final, March 2016)

Ecosystem monitoring under Article 9 and Annex V of Directive 2016/2284 (NECD)

Draft Guidance – Version 2

How and what to monitor?

(EU) 2016/2284

Table 2: Selected indicator complexes, parameters, and sources for methods from the ICP ForestsProgramme to cope with the NECD, Annex V; []: concentrations.

Measurement (Indicator complex)	Parameters	Frequency	Methods
Soil acidity in the soil solid phase	Element concentrations (base cations etc.) Ca, Mg, K, Na, Alex, Ntot and ratios C/N	Every 10-15 years at Level I and LeveIII plots	Part X
Soil acidity in the soil solution	pH, [SOx], [NO3], [base cations (Ca, Mg, K, Na)], [Alex].	Every 4 weeks at Level II plots	Part XI
Soil nitrate leaching, in soil solution	[NO3+] at deepest soil layer (40-80 cm); to calculate fluxes a soil water flux model (water balance model) has to be applied.	Every 4 weeks at Level II plots	Part X, water balance model cf. Part IX
C/N ratio + total soil N, in soil solid phase	Cstock, Nstock, C/N ratio.	Every 10-15 years at Level I and Level II plots	Part X
Nutrient balance in foliage	[N], [P], [K], [Mg], and ratios with [N].	Every 2 yrs. at Level II, every 10-15 yrs. at Level I plots	Part XII

Measurement	Parameters	Frequency	Method	Data to be reported
Lake catchment sensitivity and hydrochemical effects of air pollution (acidification)	Alkalinity, sulphate, nitrate, chloride, pH, calcium, magnesium, sodium, potassium, dissolved organic carbon, and specific conductivity	Seasonal/quarter ly to annual, depending on flush rate	Grab sampling of the upper layer (0,1-1 m) or lake outlet. Described in chapter 3.	Major ions (mg/l), nitrate (µg N/L), pH, DOC (mg C/l), alkalinity (µeq/L), conductivity at 25 °C (µS/cm)
River/stream catchment sensitivity and hydrochemical effects of air pollution (acidification)	Alkalinity, sulphate, nitrate, chloride, pH, calcium, magnesium, sodium, potassium, dissolved organic carbon, and specific conductivity	Monthly	Grab sampling. Described in chapter 3.	Major ions (mg/l), nitrate (µg N/L), pH, DOC (mg C/l), alkalinity (µeq/L), conductivity at 25 °C (µS/cm)

Table 5: Key indicators for assessing ozone damage to vegetation according to Annex 5 of the NECD.

Indicator	Measurement	Frequency	Reference for methodology and data reporting
Ozone foliar	Visible ozone symptoms in	Visible ozone	Part VIII (visible
damage to trees	leaves of tree species and on	symptoms: annually	ozone symptoms)
	trees and wood plants at 'light	at Level II plots;	and Part V (diameter
	exposed sampling sites' (LESS);	Diameter growth:	growth) of ICP
	Tree diameter growth.	every 5 yrs.	Forests Manual
Ozone foliar	Visible ozone symptoms in	Visible ozone	http://icpvegetation.c
damage to crops	leaves;	symptoms: at least	<u>eh.ac.uk</u> . To be
and non-tree	Crops: harvested yield	annually during	revised from past
species		growing season,	manuals to suit
		preferably just after	NECD (including lists
		(3-7 days) an ozone	of ozone-sensitive
		episode ⁱ ;	species)
		Crop yield: annually	
Exceedance of	Ozone concentration ⁱⁱ ,	Every year:	Method in Modelling
flux-based critical	meteorology ⁱⁱⁱ (temperature,	Hourly data during	and Mapping Manual
levels of ozone	relative humidity, light intensity,	growing season ^v	LRTAP Convention,
	rainfall, wind speed, atmospheric		Chapter 3 – 'Mapping
	pressure) and soil type (sandy,		critical levels for
	clay or loam) at or near site ^{iv} .		vegetation'
	Flux-based model DO ₃ SE can be		(http://icpvegetation.c
	used to calculate ozone flux and		<u>eh.ac.uk</u> , including
	exceedance of critical levels		link to online version
			of the DO3SE
			model ^{vi}).

Measurement (Indicator complex)	Parameter	Frequency	Method
Meteorology	Precipitation, temperature of the air, soil temperature, relative humidity, wind velocity, wind direction, global radiation/net radiation	Monthly	Part 7.1
Air chemistry	sulphur dioxide, nitrogen dioxide, ozone, particulate sulphate, nitrates in aerosols and gaseous, nitric acid, ammonia and ammonium in aerosols	Monthly	Part 7.2
Precipitation chemistry (EMEP manual)	sulphate, nitrate, ammonium, chloride, sodium, potassium, calcium, magnesium and alkalinity	Monthly	Part 7.3
Throughfall	Sulphate, nitrate, ammonium, total N, chloride, sodium, potassium, calcium, magnesium, dissolved organic carbon and strong acid (by pH)	Weekly to monthly	Part 7.5
Soil chemistry	pH (CaCl2), S total, P total N total, Ca exchangeable, Mg exchangeable. K exchangeable, Na exchangeable, Al exchangeable, TOC, exchangeable titrable acidity (H+Al)	Every fifth years	Part 7.7
Soil water chemistry	pH, Electrical conductivity, Alkalinity, Gran plot, N total, ammonium, nitrate, P total, Ca, Mg, K, Na, Aluminium total, Aluminium labile	Four times annually	Part 7.8
Runoff water chemistry	alkalinity, sulphate, nitrate, chloride, dissolved organic carbon, pH, calcium, magnesium, sodium, potassium, inorganic (labile) aluminium, total nitrogen, ammonium, stream water runoff, specific conductivity	Monthly	Part 7.10
Foliage chemistry	Ca, K, Mg, Na, N, P, S, Cu, Fe, Mn, Zn and TOC	Every fifth year	Part 7.12
Litterfall chemistry	Ca, K, Mg, Na, N, P, S, Cu, Fe, Mn, Zn and TOC	Annually	Part 7.13
Vegetation (intensive plot)	Ground, field, shrub and tree layer vegetation, specifically soil-growing vascular plants, bryophytes and lichens. Tree diameter, canopy structure,	Three year	Part 7.17
Trunk epiphytes	Lichen species growing on living tree trunks	Every fifth year	Part 7.20
Aerial green algae	number of branches , youngest shoot with algae thickest coating of algae per tree, number of annual	Annually	Part 7.21

ROTECTION AGENCY

What happens now?

- National expert group meeting took place 9th of April were reporting template was presented together with explanatory notes
- Many member states were positive to the ecosystem monitoring (big surprise!!!)
- Draft template has been accepted and reporting has to be done by 1st of july 2018
- Many references to monitoring methods by the ICPs, could fill many gaps!

Cont.

WEDISH ENVIRONMENTAL

Working Group on Effects of the Convention on Long-range Transboundary Air Pollution Has your ministry been in contact with you as national focal centers and experts?

Working Group on Effects of the Convention on Long-range Transboundary Air Pollution

NECD ecosystem monitoring

- 1. Has your ministry been in contact with you as national focal centers and experts?
- 2. Have you been involved in the national design of the monitoring?
- 3. How has the country developed its national ecosystem monitoring program?
- 4. Share your experiences on what has happened and how we can get involved?